Nov- Dec-2011

Total No. of Questions-12] [Total No. of Printed Pages-4+1 . [4062]-203

S.E. (Common to IT) (Computer Engineering) (First Semester) EXAMINATION, 2011 DIGITAL ELECTRONICS AND LOGIC DESIGN (2008 PATTERN)

Time : Three Hours

Maximum Marks : 100

- **N.B.** :- (i)
- Answers to the two Sections should be written in separate answer-books.
 - In Section I Attempt : Q. No. 1 or Q. No. 2, (ii)Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6. In Section II Attempt : Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - (iv) Figures to the right indicate full marks.
 - (v)Assume suitable data, if necessary.

SECTION I

- Do the required conversions for the following numbers : [6] 1. (a)
 - (*i*) $(BF8)_{16} = (__)_{10}$
 - $(ii) (1000)_{10} = (___)_8$
 - $(iii) (377)_8 = (___)_{16}$
 - What are different ways of representing signed binary **(b)** numbers ? Explain with examples. [6]
 - Solve the following equation using K map minimization technique. (c)Draw the diagram for the output : [6]

Z = $f(A, B, C, D) = \pi M(0, 1, 6, 7, 8, 9)$.

P.T.O.

2. (a) Perform the following operations :

- (i) $(\text{FFFF})_{16} (10000)_{10} = (___)_{10}$ (ii) $(765)_8 + (365)_8 = (___)_{16}$ (iii) $(658)_{16} + (975)_{16} = (___)_{16}$ (iv) $(1011.101)_2 = (__)_{10}$.
- (b) Solve the following equation using corresponding minimization technique. Draw the diagram for the output : [6] Z = f(A, B, C, D) = Σm(2, 4, 6, 11, 12, 14) + d(3, 10).
 (c) What are the advantages of Quine McClusky minimization technique

over K map ?

- 3. (a) Define the following terms related to logic families. Mention typical values for standard TTL family : [8]
 (i) Propagation delay
 - (ii) Fan-out
 - (iii) V_{IL}, V_{IH}
 - (iv) Noise margin.
 - (b) Draw the structure of two input CMOS NAND gate. Explain its working. [4]
 - (c) List differences between CMOS and TTL. [4]

2

[4062]-203

ours

PANEL:

[8]

[4]

4.

(a) Explain the working of two input TTL NAND gate with open collector output. Consider various input, output states for explanation.
 [8]

- (b) Which specifications of logic families are significant in CMOS-TTL interfacing ? Explain the same when CMOS drives TTL.
- 5. (a) How is BCD addition different from binary addition ? What is the use of 7483 chip ? Draw and explain nine's complementer used in BCD subtractor using 7483. [8]
 - (b) Design 16 : 1 multiplexer using only one 8 : 1 multiplexer and required discrete logic gate for the following function : [8]

 $F(A, B, C, D) = \Sigma m(0, 4, 6, 9, 12, 13).$

Or

(a) What do you mean by parity ? How does IC 74180 work ? Design 9 bit even parity generator using the same. [8]
(b) Implement two bit comparator using 1 : 16 demultiplexer (active low output). Draw the truth table of two bit comparator and explain the design in steps. [8]

3

P.T.O.

[4062]-203

6.

SECTION II

- 7. (a) Design binary sequence generator to generate binary sequence '11010' using MS JK flip-flops. How to avoid lockout condition in designed sequence generator ? [10]
 - (b) Assume 16 MHz clock source in a system. How will you divide this frequency by a factor 4 ? Explain your logic with suitable circuit diagram.

Or

- 8. (a) Draw basic internal architecture of IC 7490. Design a divideby-20 counter using same. [8]
 - (b) Draw and explain 4 bit bidirectional shift register. [8]
- 9. (a) Draw an ASM chart, state table and state diagram for synchronous circuit having the following description : [10]
 "The circuit has a control input X, clock and outputs A and B. If X = 1, on every clock rising edge the code on BA changes from 00-01-10-11-00 and repeats. If X = 0, circuit holds the present state."
 - (b) What is difference between signal and variable in VHDL ?
 Explain with example. [6]

4

[4062] - 203

- 10. (a) Write VHDL description of full substractor using dataflow and structural modeling. [10]
 (b) State and explain basic components of ASM chart. [6]
 11. (a) Explain steps for designing circuits using CPLD. [6]
 (b) Write a short note on FPGA. [6]
 - (c) Explain operations performed in various phases of instruction execution in microprocessor. [6]

Or

12. (<i>a</i>)	Design 3 : 8 decoder with PLD.	[6]
(b)	Draw and explain the block diagram of simple microp	orocessor
	based system.	[8]
(c)	Differentiate between FPGA and CPLD.	[4]

5